Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 642
Filtrar
1.
J Am Heart Assoc ; 13(9): e032172, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700022

RESUMO

BACKGROUND: The purpose of this study was to investigate a therapeutic approach targeting the inflammatory response and consequent remodeling from ischemic myocardial injury. METHODS AND RESULTS: Coronary thrombus aspirates were collected from patients at the time of ST-segment-elevation myocardial infarction and subjected to array-based proteome analysis. Clinically indistinguishable at myocardial infarction (MI), patients were stratified into vulnerable and resilient on the basis of 1-year left ventricular ejection fraction and death. Network analysis from coronary aspirates revealed prioritization of tumor necrosis factor-α signaling in patients with worse clinical outcomes. Infliximab, a tumor necrosis factor-α inhibitor, was infused intravenously at reperfusion in a porcine MI model to assess whether infliximab-mediated immune modulation impacts post-MI injury. At 3 days after MI (n=7), infliximab infusion increased proregenerative M2 macrophages in the myocardial border zone as quantified by immunofluorescence (24.1%±23.3% in infliximab versus 9.29%±8.7% in sham; P<0.01). Concomitantly, immunoassays of coronary sinus samples quantified lower troponin I levels (41.72±7.34 pg/mL versus 58.11±10.75 pg/mL; P<0.05) and secreted protein analysis revealed upregulation of injury-modifying interleukin-2, -4, -10, -12, and -18 cytokines in the infliximab-treated cohort. At 4 weeks (n=12), infliximab treatment resulted in significant protective influence, improving left ventricular ejection fraction (53.9%±5.4% versus 36.2%±5.3%; P<0.001) and reducing scar size (8.31%±10.9% versus 17.41%±12.5%; P<0.05). CONCLUSIONS: Profiling of coronary thrombus aspirates in patients with ST-segment-elevation MI revealed highest association for tumor necrosis factor-α in injury risk. Infliximab-mediated immune modulation offers an actionable pathway to alter MI-induced inflammatory response, preserving contractility and limiting adverse structural remodeling.


Assuntos
Modelos Animais de Doenças , Infliximab , Remodelação Ventricular , Infliximab/uso terapêutico , Infliximab/farmacologia , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Remodelação Ventricular/efeitos dos fármacos , Feminino , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Infarto do Miocárdio com Supradesnível do Segmento ST/imunologia , Função Ventricular Esquerda/efeitos dos fármacos , Suínos , Idoso , Fator de Necrose Tumoral alfa/metabolismo , Volume Sistólico/efeitos dos fármacos , Trombose Coronária/prevenção & controle , Trombose Coronária/tratamento farmacológico , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia , Troponina I/sangue , Troponina I/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo
2.
J Cell Mol Med ; 28(9): e18357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683127

RESUMO

In our previous study, intranuclear cardiac troponin I (cTnI) may function as a co-factor of Yin Yang 1(YY1). Here, we aimed to explore the role of intranuclear cTnI in ageing hearts. Nuclear translocation of cTnI was demonstrated using Western blot and immunofluorescence. The potential nuclear localization sequences (NLSs) of cTnI were predicted by a web server and then verified in 293T cells by putative NLS-eGFP-GST and NLS-mutant transfection. The ratio of Nuclear cTnI/ Total cTnI (Nu/T) decreased significantly in ageing hearts, accompanied with ATG5-decline-related impaired cardiac autophagy. RNA sequencing was performed in cTnI knockout hearts. The differential expressed genes (DEGs) were analysed by overlapping with YY1 ChIP-sequencing data. cTnI gain and loss experiments in vitro determined those filtered DEGs' expression levels. A strong correlation was found between expression patterns cTnI and FOS. Using ChIP-q-PCR, we demonstrated that specific binding DNA sequences of cTnI were enriched in the FOS promoter -299 to -157 region. It was further verified that pcDNA3.1 (-)-cTnI could increase the promoter activity of FOS by using luciferase report assay. At last, we found that FOS can regulate the ATG5 (autophagy-related gene 5) gene by using a luciferase report assay. Taken together, our results indicate that decreased intranuclear cTnI in ageing hearts may cause impaired cardiac autophagy through the FOS/ATG5 pathway.


Assuntos
Envelhecimento , Proteína 5 Relacionada à Autofagia , Autofagia , Núcleo Celular , Miocárdio , Troponina I , Troponina I/metabolismo , Troponina I/genética , Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Envelhecimento/metabolismo , Envelhecimento/genética , Animais , Miocárdio/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Camundongos , Células HEK293 , Masculino , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Camundongos Knockout
3.
Pediatr Neurol ; 153: 11-18, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306745

RESUMO

BACKGROUND: Delandistrogene moxeparvovec is a gene transfer therapy approved in the United States, United Arab Emirates, and Qatar for the treatment of ambulatory patients aged four through five years with a confirmed Duchenne muscular dystrophy (DMD)-causing mutation in the DMD gene. This therapy was developed to address the underlying cause of DMD through targeted skeletal, respiratory, and cardiac muscle expression of delandistrogene moxeparvovec micro-dystrophin, an engineered, functional dystrophin protein. METHODS: Drawing on clinical trial experience from Study 101 (NCT03375164), Study 102 (NCT03769116), and ENDEAVOR (Study 103; NCT04626674), we outline practical considerations for delandistrogene moxeparvovec treatment. RESULTS: Before infusion, the following are recommended: (1) screen for anti-adeno-associated virus rhesus isolate serotype 74 total binding antibody titers <1:400; (2) assess liver function, platelet count, and troponin-I; (3) ensure patients are up to date with vaccinations and avoid vaccine coadministration with infusion; (4) administer additional corticosteroids starting one day preinfusion (for patients already on corticosteroids); and (5) postpone dosing patients with any infection or acute liver disease until event resolution. Postinfusion, the following are recommended: (1) monitor liver function weekly (three months postinfusion) and, if indicated, continue until results are unremarkable; (2) monitor troponin-I levels weekly (first month postinfusion, continuing if indicated); (3) obtain platelet counts weekly (two weeks postinfusion), continuing if indicated; and (4) maintain the corticosteroid regimen for at least 60 days postinfusion, unless earlier tapering is indicated. CONCLUSIONS: Although the clinical safety profile of delandistrogene moxeparvovec has been consistent, monitorable, and manageable, these practical considerations may mitigate potential risks in a real-world clinical practice setting.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofina/genética , Distrofina/metabolismo , Distrofina/uso terapêutico , Troponina I/genética , Troponina I/metabolismo , Corticosteroides/uso terapêutico , Terapia Genética , Músculo Esquelético
4.
J Phys Chem B ; 127(41): 8736-8748, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37791815

RESUMO

Adrenaline acts on ß1 receptors in the heart muscle to enhance contractility, increase the heart rate, and increase the rate of relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. Phosphorylation of serines 22 and 23 in the N-terminal peptide of cardiac troponin I is responsible for lusitropy. Mutations associated with cardiomyopathy suppress the phosphorylation-dependent change. Key parts of troponin responsible for this modulatory system are disordered and cannot be resolved by conventional structural approaches. We performed all-atom molecular dynamics simulations (5 × 1.5 µs runs) of the troponin core (419 amino acids) in the presence of Ca2+ in the bisphosphorylated and unphosphorylated states for both wild-type troponin and the troponin C (cTnC) G159D mutant. PKA phosphorylation affects troponin dynamics. There is significant rigidification of the structure involving rearrangement of the cTnI(1-33)-cTnC interaction and changes in the distribution of the cTnC helix A/B angle, troponin I (cTnI) switch peptide (149-164) docking, and the angle between the regulatory head and ITC arm domains. The familial dilated cardiomyopathy cTnC G159D mutation whose Ca2+ sensitivity is not modulated by cTnI phosphorylation exhibits a structure inherently more rigid than the wild type, with phosphorylation reversing the direction of all metrics relative to the wild type.


Assuntos
Simulação de Dinâmica Molecular , Troponina I , Fosforilação , Troponina I/genética , Troponina I/metabolismo , Mutação , Miocárdio/metabolismo , Peptídeos/metabolismo , Cálcio/metabolismo
5.
Acta Parasitol ; 68(4): 762-768, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37589881

RESUMO

PURPOSE: Babesiosis is a tick-borne disease caused by protozoon species in the Babesia genus of the Babesiadae family. The systemic inflammatory response induced by infection is considered to be an important feature of the pathophysiology of ovine babesiosis. In this study, it was aimed to determine serum oxidative status, levels of some cytokines, acute phase proteins and heart damage markers in babesiosis infection. MATERIALS AND METHODS: A sample of 40 sheep was used for this purpose, of which 20 were healthy and 20 were infected with Babesia ovis. Babesia infection was diagnosed from Giemsa-stained peripheral blood smears. Infection was also confirmed by the polymerase chain reaction (PCR). Sera from blood samples was tested for oxidative stress parameters (malondialdehyde [MDA], total antioxidant status [TAS], superoxide dismutase [SOD], catalase [CAT] and glutathione peroxidase [GPx]), cytokines (interleukins IL-6, IL-1ß, IL-10, tumour necrosis factor α (TNF-α) and interferon-ϒ [IFN-ϒ]), acute-phase proteins (C-reactive protein [CRP], serum amyloid A [SAA] and haptoglobin [Hp]) and specific (troponin I [cTnI], creatine kinase-MB [CK-MB]) and nonspecific (lactate dehydrogenase [LDH], aspartate transaminase [AST]) cardiac damage markers. RESULTS: MDA, SOD, CAT, Hp, TAS, IL-6, IL-10, TNF-α, IL-1ß, INF-γ, AST, LDH, CK-MB mass and troponin I values were higher in the patient group than in the healthy group (P < 0.05). However, there was not found to be a statistical difference between the healthy and patient groups in terms of GPx, SAA and CRP values (P > 0.05). CONCLUSIONS: It can be stated that serum levels of oxidative stress, some acute phase proteins and cardiac damage markers may increase in naturally infected sheep with babesiosis.


Assuntos
Babesia , Babesiose , Doenças dos Ovinos , Animais , Ovinos , Humanos , Citocinas , Interleucina-10 , Fator de Necrose Tumoral alfa , Proteínas de Fase Aguda/metabolismo , Interleucina-6 , Troponina I/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo/fisiologia , Superóxido Dismutase/metabolismo
7.
J Cell Mol Med ; 27(9): 1277-1289, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967707

RESUMO

Diabetic cardiomyopathy (DCM) is associated with differential and time-specific regulation of ß-adrenergic receptors and cardiac cyclic nucleotide phosphodiesterases with consequences for total cyclic adenosine 3'-5' monophosphate (cAMP) levels. We aimed to investigate whether these changes are associated with downstream impairments in cAMP and Ca2+ signalling in a type 1 diabetes (T1D)-induced DCM model. T1D was induced in adult male rats by streptozotocin (65 mg/kg) injection. DCM was assessed by cardiac structural and molecular remodelling. We delineated sequential changes affecting the exchange protein (Epac1/2), cAMP-dependent protein kinase A (PKA) and Ca2+ /Calmodulin-dependent kinase II (CaMKII) at 4, 8 and 12 weeks following diabetes, by real-time quantitative PCR and western blot. Expression of Ca2+ ATPase pump (SERCA2a), phospholamban (PLB) and Troponin I (TnI) was also examined. Early upregulation of Epac1 transcripts was noted in diabetic hearts at Week 4, followed by increases in Epac2 mRNA, but not protein levels, at Week 12. Expression of PKA subunits (RI, RIIα and Cα) remained unchanged regardless of the disease stage, whereas CaMKII increased at Week 12 in DCM. Moreover, PLB transcripts were upregulated in diabetic hearts, whereas SERCA2a and TnI gene expression was unchanged irrespective of the disease evolution. PLB phosphorylation at threonine-17 was increased in DCM, whereas phosphorylation of both PLB at serine-16 and TnI at serine-23/24 was unchanged. We show for the first time differential and time-specific regulations in cardiac cAMP effectors and Ca2+ handling proteins, data that may prove useful in proposing new therapeutic approaches in T1D-induced DCM.


Assuntos
Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Masculino , Ratos , Animais , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Troponina I/metabolismo , Fosforilação , Serina/metabolismo , Adenosina/metabolismo , Miocárdio/metabolismo
8.
Biomarkers ; 28(4): 401-408, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932833

RESUMO

INTRODUCTION: The risk of cardiotoxicity is associated with the use of anabolic-androgenic steroids and analgesics, several deaths were attributed to such medications. OBJECTIVES: This study investigates the effects of boldenone (BOLD) and tramadol (TRAM) alone or in combination on the heart. MATERIAL AND METHODS: Forty adult male rats were divided into four groups. Normal control group, BOLD (5 mg/kg, i.m.) per week, tramadol Hcl (TRAM) (20 mg/kg, i.p.) daily and a combination of BOLD (5 mg/kg) and TRAM (20 mg/kg), respectively for two months. Serum and cardiac tissue were extracted for determination of serum, aspartate aminotransferase (AST), creatine phosphokinase (CPK) and lipid profiles, tissue malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), tumour necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and histopathological examination. Troponin I gene expression was quantified in cardiac tissue using real-time polymerase chain reaction technique. RESULTS: Groups received BOLD and TRAM alone and in combination showed elevated serum biochemical parameters (AST, CPK) and deviations in lipid profiles, elevation in oxidative and inflammatory parameters (MDA, NO, TNF-α and IL-6), and decrease in GSH and SOD, up-regulated cardiac troponin I as well as distorted cardiac histopathological pictures. CONCLUSION: The current study elucidated the risk of administration of these drugs for sustained periods as well as the marked detrimental effects of using these drugs in combination.


Assuntos
Miocárdio , Tramadol , Ratos , Masculino , Animais , Miocárdio/metabolismo , Troponina I/genética , Troponina I/metabolismo , Tramadol/toxicidade , Tramadol/metabolismo , Citocinas/genética , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Doxorrubicina , Estresse Oxidativo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
9.
Circulation ; 147(2): 142-153, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36382596

RESUMO

BACKGROUND: Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice. METHODS: Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype. RESULTS: (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; P<0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; P<0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, Tnni3k (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei. CONCLUSIONS: These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.


Assuntos
Miócitos Cardíacos , Troponina I , Camundongos , Animais , Troponina I/metabolismo , Camundongos Endogâmicos DBA , Miócitos Cardíacos/metabolismo , Ciclo Celular , Proliferação de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
Altern Lab Anim ; 51(1): 12-29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36484201

RESUMO

Stem cell-based therapy presents an attractive alternative to conventional therapies for degenerative diseases. Numerous studies have investigated the capability of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) to contribute to the regeneration of cardiomyocytes, and the results have encouraged further basic and clinical studies on the MSC-based treatment of cardiomyopathies. This study aimed to determine the potential of cardiomyogenic transcription factors in differentiating hUC-MSCs into cardiac-like cells in vitro. MSCs were isolated from umbilical cord tissue and were transduced with the transcription factor genes, GATA-4 and Nkx 2.5, via infection with lentiviruses, to promote differentiation into the cardiomyogenic lineage. Gene and protein expression were analysed with qPCR and immunocytochemical staining. After transduction, differentiated cardiac-like cells showed significant expression of cardiac genes and proteins, namely GATA-4, Nkx-2.5, cardiac troponin I (cTnI) and myosin heavy chain (MHC). The cardiomyogenic-induced group significantly overexpressed cardiac-specific genes (GATA-4, Nkx-2.5, cTnI, MHC, α-actinin and Wnt2). Expression of the calcium channel gene was also significantly increased, while the sodium channel gene was downregulated in the transduced hUC-MSCs, as compared to non-transduced cells. The results suggest that GATA-4 and Nkx-2.5 interact synergistically in the activation of downstream cardiac transcription factors, demonstrating the functional convergence of hUC-MSC differentiation into cardiac-like cells. These findings could potentially be utilised in the efficient production of cardiac-like cells from stem cells; these cardiac-like cells could then be used in various applications, such as for in vivo implantation in infarcted myocardium, and for drug screening in toxicity testing.


Assuntos
Células-Tronco Mesenquimais , Miocárdio , Humanos , Diferenciação Celular/fisiologia , Miocárdio/metabolismo , Fatores de Transcrição/metabolismo , Troponina I/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo
11.
J Biol Chem ; 299(1): 102767, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470422

RESUMO

PKA-mediated phosphorylation of sarcomeric proteins enhances heart muscle performance in response to ß-adrenergic stimulation and is associated with accelerated relaxation and increased cardiac output for a given preload. At the cellular level, the latter translates to a greater dependence of Ca2+ sensitivity and maximum force on sarcomere length (SL), that is, enhanced length-dependent activation. However, the mechanisms by which PKA phosphorylation of the most notable sarcomeric PKA targets, troponin I (cTnI) and myosin-binding protein C (cMyBP-C), lead to these effects remain elusive. Here, we specifically altered the phosphorylation level of cTnI in heart muscle cells and characterized the structural and functional effects at different levels of background phosphorylation of cMyBP-C and with two different SLs. We found Ser22/23 bisphosphorylation of cTnI was indispensable for the enhancement of length-dependent activation by PKA, as was cMyBP-C phosphorylation. This high level of coordination between cTnI and cMyBP-C may suggest coupling between their regulatory mechanisms. Further evidence for this was provided by our finding that cardiac troponin (cTn) can directly interact with cMyBP-C in vitro, in a phosphorylation- and Ca2+-dependent manner. In addition, bisphosphorylation at Ser22/Ser23 increased Ca2+ sensitivity at long SL in the presence of endogenously phosphorylated cMyBP-C. When cMyBP-C was dephosphorylated, bisphosphorylation of cTnI increased Ca2+ sensitivity and decreased cooperativity at both SLs, which may translate to deleterious effects in physiological settings. Our results could have clinical relevance for disease pathways, where PKA phosphorylation of cTnI may be functionally uncoupled from cMyBP-C phosphorylation due to mutations or haploinsufficiency.


Assuntos
Proteínas de Transporte , Proteínas Quinases Dependentes de AMP Cíclico , Miofibrilas , Troponina I , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miocárdio/metabolismo , Miofibrilas/metabolismo , Fosforilação , Troponina I/metabolismo , Proteínas de Transporte/metabolismo
12.
Biol. Res ; 56: 28-28, 2023. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1513740

RESUMO

BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.


Assuntos
Animais , Camundongos , Sarcopenia/induzido quimicamente , Sarcopenia/patologia , Ácido Ursodesoxicólico/metabolismo , Ácido Ursodesoxicólico/farmacologia , Músculo Esquelético/metabolismo , Troponina I/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Camundongos Endogâmicos C57BL
13.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293342

RESUMO

Doxorubicin (DOXO) is an effective drug that is used in the treatment of a large number of cancers. Regardless of its important chemotherapeutic characteristics, its usage is restricted because of its serious side effects; the most obvious is cardiotoxicity, which can manifest acutely or years after completion of treatment, leading to left ventricular dysfunction, dilated cardiomyopathy, and heart failure. Galectin 3 (Gal-3) is a beta galactoside binding lectin that has different roles in normal and pathophysiological conditions. Gal-3 was found to be upregulated in animal models, correlating with heart failure, atherosclerosis, and myocardial infarction. Male C57B6/J and B6.Cg-Lgals3 /J Gal-3 knockout (KO) mice were used for a mouse model of acute DOXO-induced cardiotoxicity. Mice were given DOXO or vehicle (normal saline), after which the mice again had free access to food and water. Heart and plasma samples were collected 5 days after DOXO administration and were used for tissue processing, staining, electron microscopy, and enzyme-linked immunosorbent assay (ELISA). There was a significant increase in the heart concentration of Gal-3 in Gal-3 wild type DOXO-treated mice when compared with the sham control. There were significantly higher concentrations of heart cleaved caspase-3, plasma troponin I, plasma lactate dehydrogenase, and plasma creatine kinase in Gal-3 KO DOXO-treated mice than in Gal-3 wild type DOXO-treated mice. Moreover, there were significantly higher heart antioxidant proteins and lower oxidative stress in Gal-3 wild type DOXO-treated mice than in Gal-3 KO DOXO-treated mice. In conclusion, Gal-3 can affect the redox pathways and regulate cell survival and death of the myocardium following acute DOXO injury.


Assuntos
Galectina 3 , Insuficiência Cardíaca , Masculino , Camundongos , Animais , Galectina 3/genética , Galectina 3/metabolismo , Caspase 3/metabolismo , Cardiotoxicidade/etiologia , Troponina I/metabolismo , Miócitos Cardíacos/metabolismo , Antioxidantes/farmacologia , Solução Salina , Camundongos Endogâmicos C57BL , Doxorrubicina/efeitos adversos , Estresse Oxidativo , Camundongos Knockout , Insuficiência Cardíaca/metabolismo , Creatina Quinase/metabolismo , Água/metabolismo , Lactato Desidrogenases/metabolismo
14.
Rev Assoc Med Bras (1992) ; 68(8): 1011-1016, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36134829

RESUMO

OBJECTIVE: Heart attack is one of the most common causes of sudden death in adults. Therefore, early detection of heart attack and investigation of potential new biomarkers are of great importance. We investigated whether perilipin-5 is a potential biomarker by examining changes in perilipin-5 serum levels along with high-sensitivity cardiac troponin I during a heart attack. METHODS: The subjects were divided into two groups: (1) control group and (2) patients with heart attack, with 150 people in each group. High-sensitivity cardiac troponin I, perilipin-5, total oxidant status, malondialdehyde, reduced glutathione, and superoxide dismutase levels in serum samples were measured. In addition, perilipin-5 mRNA expressions and protein levels were analyzed. RESULTS: There was no overall statistical difference between the demographic characteristics of the groups. However, high-density lipoprotein, creatine kinase, Creatine kinase myocardial band, aspartate amino transferase, lactate dehydrogenase, and calcium levels were higher in the heart attack group compared to the control group. We found that the high-sensitivity cardiac troponin I and perilipin-5 levels increased in the patients with heart attack (p<0.0001) compared to control. Although there was an insignificant increase in malondialdehyde levels in the heart attack group (p>0.05), there was a 35.9% increase in total oxidant status levels and a 33.5 and 24.1% decrease in glutathione and superoxide dismutase levels, respectively (p<0.01), compared to control. Perilipin-5 mRNA and protein levels in heart attack patients increased by 48.2 and 23.6%, respectively, compared to the control group (p<0.01). CONCLUSION: Our results showed that perilipin-5 together with high-sensitivity cardiac troponin I could be a promising biomarker in heart attack.


Assuntos
Infarto do Miocárdio , Troponina I , Adulto , Ácido Aspártico/metabolismo , Biomarcadores , Cálcio/metabolismo , Creatina/metabolismo , Creatina Quinase/metabolismo , Glutationa , Humanos , L-Lactato Desidrogenase , Metabolismo dos Lipídeos , Lipoproteínas HDL , Malondialdeído , Oxidantes , Perilipina-5/metabolismo , RNA Mensageiro/metabolismo , Superóxido Dismutase , Troponina I/metabolismo
15.
J Biochem Mol Toxicol ; 36(9): e23143, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35815753

RESUMO

Bergapten (BeG) is explored for its anti-inflammatory and antioxidant properties. Myocardial infarction (MI) is reported to be one of the leading cardiovascular diseases characterized by mitochondrial dysfunction and apoptosis. The main purpose of this study is to assess the cardiopreventive effects of BeG (50 mg/kg) in isoproterenol (ISO)-induced MI in Wistar rats. The increased infarct size after ISO induction was reduced simultaneously on treatment with BeG. Similarly, augmented levels of cardiac biomarkers, namely cardiac troponin T, creatine kinase (CK), cardiac troponin I, and CK-MB were also suppressed by BeG. The increased rate of lipid hydroperoxides and thiobarbituric acid reactive substances owing to the oxidative stress caused by free radical generation in ISO-induced rats were also inhibited by BeG. Antioxidants reduce oxidative stress by scavenging free radicals. ISO induction reduces these antioxidant enzymes glutathione peroxidase, catalase, superoxide dismutase, and glutathione, and levels causing oxidative cardiac damage to the heart tissue. BeG supplementation improved these enzymes synthesis preventing potential damage to the myocardium. Inflammation caused by ISO pretreatment increased the secretion of proinflammatory cytokines in ISO-induced rats. Pretreatment with BeG suppressed these inflammatory cytokines to a normal level in ISO + BeG-treated rats. The histopathological examination of the morphological characteristics showed that the intensity of cardiac damage caused by ISO induction was less in BeG pretreated rats with less inflammatory cells and no necrosis. BeG also showed promising results in the molecular alteration of AMP-activated protein kinase/endothelial nitric oxide synthase/protein kinase B signaling molecules. These observations emphasize the cardioprotective effects of BeG and its potential use as a drug in the near future.


Assuntos
Proteínas Quinases Ativadas por AMP , Infarto do Miocárdio , 5-Metoxipsoraleno/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose , Biomarcadores/metabolismo , Catalase/metabolismo , Creatina Quinase Forma MB , Citocinas/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Isoproterenol/toxicidade , Peróxidos Lipídicos/metabolismo , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Troponina I/efeitos adversos , Troponina I/metabolismo , Troponina T/metabolismo , Troponina T/farmacologia
16.
Exp Physiol ; 107(10): 1159-1171, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654394

RESUMO

NEW FINDINGS: What is the topic of this review? The status and potential role of novel biological markers (biomarkers) that can help identify the patients at risk of organ injury or long-term complications following heatstroke. What advances does it highlight? Numerous biomarkers were identified related to many aspects of generalized heatstroke-induced cellular injury and tissue damage, and heatstroke-provoked cardiovascular, renal, cerebral, intestinal and skeletal muscle injury. No novel biomarkers were identified for liver or lung injury. ABSTRACT: Classic and exertional heatstroke cause acute injury and damage across numerous organ systems. Moreover, heatstroke survivors may sustain long-term neurological, cardiovascular and renal complications with a persistent risk of death. In this context, biomarkers, defined as biological samples obtained from heatstroke patients, are needed to detect early organ injury, and predict outcomes to develop novel organ preservation therapeutic strategies. This narrative review provides preliminary insights that will guide the development and future utilization of these biomarkers. To this end, we have identified numerous biomarkers of widespread heatstroke-associated cellular injury, tissue damage and repair (extracellular heat shock proteins 72 and 60, high mobility group box protein 1, histone H3, and interleukin-1α), and other organ-specific biomarkers including those related to the cardiovascular system (cardiac troponin I, endothelium-derived factors, circulation endothelial cells, adhesion molecules, thrombomodulin and von Willebrand factor antigen), the kidneys (plasma and urinary neutrophil gelatinase-associated lipocalin), the intestines (intestinal fatty acid-binding protein 2), the brain (serum S100ß and neuron-specific enolase) and skeletal muscle (creatine kinase, myoglobin). No specific biomarkers have been identified so far for liver or lung injury in heatstroke. Before translating the identified biomarkers into clinical practice, additional preclinical and clinical prospective studies are required to further understand their clinical utility, particularly for the biomarkers related to long-term post-heatstroke health outcomes.


Assuntos
Golpe de Calor , Lesão Pulmonar , Biomarcadores , Creatina Quinase/metabolismo , Células Endoteliais/metabolismo , Proteínas de Ligação a Ácido Graxo/uso terapêutico , Proteínas HMGB/metabolismo , Proteínas de Choque Térmico HSP72/metabolismo , Histonas , Humanos , Interleucina-1alfa/metabolismo , Lipocalina-2/uso terapêutico , Lesão Pulmonar/complicações , Mioglobina/metabolismo , Fosfopiruvato Hidratase/metabolismo , Trombomodulina/metabolismo , Trombomodulina/uso terapêutico , Troponina I/metabolismo , Fator de von Willebrand/metabolismo , Fator de von Willebrand/uso terapêutico
17.
Environ Sci Pollut Res Int ; 29(46): 69635-69651, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35576032

RESUMO

Cyclophosphamide (Cyclo) is a chemotherapeutic agent used as an immunosuppressant and as a treatment for many cancerous diseases. Many previous pieces of literature proved the marked cardio and neurotoxicity of the drug. Thus, this research provides evidence on the alleviative effect of flavocoxid on the cardiac and brain toxicity of cyclophosphamide in mice and determines its underlying mechanisms. Flavocoxid (Flavo) is a potent antioxidant and anti-inflammatory agent that inhibits the peroxidase activity of cyclooxygenase (COX-1 and COX-2) enzymes and 5-lipooxygenase (5-LOX). Flavo was administered orally (20 mg/kg) for 2 weeks, followed by Cyclo (100 mg/kg, i.p.) on day 14. Higher heart and brain weight indices, serum lactate dehydrogenase (LDH), creatine kinase (CK-MB), and nitric oxide (NO) were mitigated following Flavo administration. Flavo modulated oxidative stress biomarkers (malonaldehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD)), tumor necrosis factor-α (TNF-α), and interleukin (IL)-1ß. Additionally, cardiac troponin I (cTn-I), nuclear factor kappa B (NF-κB), brain amyloid precursor protein (APP), and granulocyte macrophage colony-stimulating factor (GM-CSF) were decreased by Flavo administration. Moreover, Flavo ameliorated heart and brain histopathological changes and caspase-3 levels. Collectively, Flavo (20 mg/kg) for 14 days showed significant cardio and neuroprotective effects due to its antioxidant, anti-inflammatory, and antiapoptotic activities via modulation of oxidative stress, inflammation, and the GM-CSF/NF-κB signaling pathway.


Assuntos
NF-kappa B , Fármacos Neuroprotetores , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Caspase 3/metabolismo , Catequina , Creatina Quinase/metabolismo , Creatina Quinase/farmacologia , Ciclo-Oxigenase 2/metabolismo , Ciclofosfamida/toxicidade , Combinação de Medicamentos , Glutationa/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Imunossupressores/farmacologia , Interleucinas/metabolismo , Lactato Desidrogenases/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Malondialdeído/farmacologia , Camundongos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/farmacologia , Estresse Oxidativo , Peroxidases/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo , Troponina I/metabolismo , Troponina I/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
18.
Mol Cell Biochem ; 477(6): 1803-1815, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35316461

RESUMO

The cardiac isoform of troponin I has a unique N-terminal extension (~ 1-30 amino acids), which contributes to the modulation of cardiac contraction and relaxation. Hearts of various species including humans produce a truncated variant of cardiac troponin I (cTnI-ND) deleting the first ~ 30 amino acids as an adaption in pathophysiological conditions. In this study, we investigated the impact of cTnI-ND chronic expression in transgenic mouse hearts compared to wildtype (WT) controls (biological n = 8 in each group). We aimed to determine the global phosphorylation effects of cTnI-ND on the cardiac proteome, thereby determining the signaling pathways that have an impact on cardiac function. The samples were digested and isobarically labeled and equally mixed for relative quantification via nanoLC-MS/MS. The peptides were then enriched for phospho-peptides and bioinformatic analysis was done with Ingenuity Pathway Analysis (IPA). We found approximately 77% replacement of the endogenous intact cTnI with cTnI-ND in the transgenic mouse hearts with 1674 phospho-proteins and 2971 non-modified proteins. There were 73 significantly altered phospho-proteins; bioinformatic analysis identified the top canonical pathways as associated with integrin, protein kinase A, RhoA, and actin cytoskeleton signaling. Among the 73 phospho-proteins compared to controls cTnI-ND hearts demonstrated a significant decrease in paxillin and YAP1, which are known to play a role in cell mechano-sensing pathways. Our data indicate that cTnI-ND modifications in the sarcomere are sufficient to initiate changes in the phospho-signaling profile that may underly the chronic-adaptive response associated with cTnI cleavage in response to stressors by modifying mechano-sensitive signaling pathways.


Assuntos
Espectrometria de Massas em Tandem , Troponina I , Aminoácidos , Animais , Cálcio/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miocárdio/metabolismo , Peptídeos , Fosforilação , Transdução de Sinais , Troponina I/química , Troponina I/genética , Troponina I/metabolismo
19.
Mol Pharmacol ; 101(5): 286-299, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236770

RESUMO

We tested the hypothesis that isoform shifts in sarcomeres of the immature heart modify the effect of cardiac myosin-directed sarcomere inhibitors and activators. Omecamtiv mecarbil (OM) activates tension and is in clinical trials for the treatment of adult acute and chronic heart failure. Mavacamten (Mava) inhibits tension and is in clinical trials to relieve hypercontractility and outflow obstruction in advanced genetic hypertrophic cardiomyopathy (HCM), which is often linked to mutations in sarcomeric proteins. To address the effect of these agents in developing sarcomeres, we isolated heart fiber bundles, extracted membranes with Triton X-100, and measured tension developed over a range of Ca2+ concentrations with and without OM or Mava treatment. We made measurements in fiber bundles from hearts of adult nontransgenic (NTG) controls expressing cardiac troponin I (cTnI), and from hearts of transgenic (TG-ssTnI) mice expressing the fetal/neonatal form, slow skeletal troponin I (ssTnI). We also compared fibers from 7- and 14-day-old NTG mice expressing ssTnI and cTnI. These studies were repeated with 7- and 14-day-old transgenic mice (TG-cTnT-R92Q) expressing a mutant form of cardiac troponin T (cTnT) linked to HCM. OM increased Ca2+-sensitivity and decreased cooperative activation in both ssTnI- and cTnI-regulated myofilaments with a similar effect: reducing submaximal tension in immature and mature myofilaments. Although Mava decreased tension similarly in cTnI- and ssTnI-regulated myofilaments controlled either by cTnT or cTnT-R92Q, its effect involved a depressed Ca2+-sensitivity in the mature cTnT-R92 myofilaments. Our data demonstrate an influence of myosin and thin-filament associated proteins on the actions of myosin-directed agents such as OM and Mava. SIGNIFICANCE STATEMENT: The effects of myosin-targeted activators and inhibitors on Ca2+-activated tension in developing cardiac sarcomeres presented here provide novel, ex vivo evidence as to their actions in early-stage cardiac disorders. These studies advance understanding of the molecular mechanisms of these agents, which are important in preclinical studies employing sarcomere Ca2+-response as a screening approach. The data also inform the use of commonly immature cardiac myocytes generated from human-inducible pluripotent stem cells in screening for sarcomere activators and inhibitors.


Assuntos
Miofibrilas , Sarcômeros , Animais , Cálcio/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos , Miofibrilas/metabolismo , Miosinas/metabolismo , Miosinas/farmacologia , Troponina I/genética , Troponina I/metabolismo , Troponina I/farmacologia
20.
Scand J Clin Lab Invest ; 82(2): 104-107, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35112632

RESUMO

Chronic elevation of cardiac troponin I (cTnI) is associated with heart failure and cardiovascular death. Paradoxically, observational studies have indicated that current smokers have lower cTnI concentrations than non-smokers. We examined determinants of cTnI in smokers and the effect of smoking cessation on cTnI. Overweight or obese smokers received motivational support and varenicline to aid cessation and dietary advice to limit weight gain. Quitters were defined according to the Russell standard (≤5 cigarettes after the quit date) and validated with expired breath CO <10 ppm. Of the total 122 participants, 108 completed assessments at 12 weeks and 78 were classified as quitters versus 30 who continued smoking. cTnI was measured with a high-sensitivity assay with a limit of detection of 1.2 ng/L (Abbott Diagnostics), and concentrations (log-transformed) were compared between quitters and continuing smokers. cTnI concentrations were significantly higher in men than women and correlated with age, but not with number of cigarettes/day. Quitters had median baseline and 12-week levels of 1.4 ng/L (interquartile range [IQR] 1.2-2.5) and 1.4 ng/L (IQR 1.2-2.4), respectively, while nonquitters had baseline and 12-week levels of 1.5 ng/L (IQR 1.2-2.9) and 1.8 ng/L (IQR 1.3-3.4), respectively. The change in cTnI concentrations from baseline to 12 weeks did not differ between quitters and continuous smokers (p = .7). The results suggest that smoking cessation does not affect levels of cTnI, a marker of chronic subclinical myocardial injury, in contrast to prior observational data suggesting that tobacco smoking is associated with lower cTn concentrations.


Assuntos
Insuficiência Cardíaca , Abandono do Hábito de Fumar , Troponina I , Biomarcadores , Feminino , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Estudos Observacionais como Assunto , Fumar/metabolismo , Troponina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA